


INTRODUCTION 1

BTake A Look At Your Intellivision® Computer BTurning Your
Computer On/Off BWho's Smarter, You Or The Computer?
EWhat Is BASIC, Anyway? BEWhat Is A Program?

BLet’s Get Started

CHAPTER 1: Infroduction To Immediate Mode 7/

Hlet’'s Go Through A Command BArrow Keys BImmediate
Mode: As A Calculator; To Try Out Functions & Routines; To Interact
With Programs (RUN, LIST, CLR, NEW, DEL, MENU)

CHAPTER 6: Branching 47
BIF... EGOSUB MNested Subroutine

CHAPTER 2: Infroduction To Programmed Mode 17

HLet's Go Through A Program Step-By-Step
HLine Numbers BLine Length BReturn Key BEscape Key

CHAPTER 3: Constants & Variables 23
BConstants: Numeric & String BVariables: Numeric & String

CHAPTER 4: Assigning Values To Variables 29

ENumeric Variables: When You Write A Program; When You Run A
Program (INPU) @String Variables: When You Write A Program (SET
& PUT); When You Run A Program (GET & PUT) BEPRIN:Print

HColor Coding BPunctuation EMemory

CHAPTER 5: Looping 39
EGOTO MFOR...NEXT

CHAPTER 7: READ...DATA 57
CHAPTER 8: Arrays (DIM:Dimension) 61
CHAPTER 9: Routines and Functions 69
CHAPTER 410: How To Write A Program 81
EDebugging A Program

CHAPTER 11: Sample Program 85

BRoutines To Display Objects In Your Intellivision Game Cartridges




_. l"I""""llllmﬂ

111




We hope this book will be a big help to you. It
is designed to take you step-by-step through the
concepts of Intellivision BASIC. It is especially
designed for those of you who are starting from
square one, learning what BASIC computer pro-
gramming is and how to use it!

As you read through this book, you will be learn-
ing at your own pace. If one chapter doesn’t click
with you, read it again. Remember, all new con-
cepts take time to learn.

Then once you understand the concepts, you take
it from there...because the next step is actually
thinking in BASIC and being able to write your
own programs. This is when you can get creative.
You choose the programs you want to write.
Balance your checkbook, keep tabs on your
monthly expenses, work on homework, even write
simple educational games. If you are a video game
buff, you will be excited about the unique video
game features built right into your Intellivision®

Computer system. Manipulate graphics and sounds
and even create your own games. The sky’s the
limit.

If you are new to programming, start by writing
very simple programs, and work your way up.
Pretty soon you’ll be able to get as fancy as you
want...just keep programrming!

Before receiving this book, we hope you read
through the Owner’s Guide which came with your
Computer Module. As you go through this book, be
sure to refer to similar sections in the Owner’s
Guide. Between the two...you will get a good start
at learning BASIC!

You are probably rarin’ to get started. So...if you
are not already hooked up, refer to page 8 in the
Owner’s Guide. Then follow this book one step at a
time. Be sure to type in the examples as you
go...it’ll make learning BASIC programrning much
eagsier.




i

\

m




=




TURN YOUR COMPUTER ON

When your Intfellivision computer system is hooked-up, it’s
time to get the power on.

First make sure you have inserted a cartridge then turn your
Master Component ON.

Turn your TV set ON.

TURN YOUR COMPUTER OFF

To keep your system running properly, it's important to turn
your computer off a certain way.

First tfurn off your TV set.

Then turn your Master Component off.

If for some reason you turn your Master Component off
efore you turn your TV off, the TV screen looks as though

you are getting very poor reception. If the volume is turned
up, you will hear a hissing sound. Simply turn your TV set off.

YOU OR THE COMPUTER?

A computer does not think! A computer is designed to store
the information you give it, and use this information accord-
ing fo your instructions. It only does what you tell it to do. If
you ask the computer to add 2+2, it would do exactly
that...add the two together...and that’s all. If you want the
answer, you have to ask for that too! You are the brains
behind the machine!

In order to communicate with a computer, you both need
to speak the same language. There are a number of com-
puter languages, but most are difficult for us to learn. So a
special language was developed that computers can use
and is easy for beginners to learn and use. This computer
language is called BASIC. You will use the BASIC language
to tell a computer what you want it to do.




Just like learning any new language, you have to learn a
new vocabulary. Infellivision BASIC includes a few symbols
and words called KEYWORDS, MONITOR COMMANDS,
FUNCTIONS and ROUTINES. You will be learning about these
as you read through the next 11 chapters. If you ever need
a quick reference to any of these words, turn to the Owner’s
Guide Appendix A and look up the brief description.

These Keywords, Commands, Functions and Routines allow
you to give the computer instructions...and instructions are
the name of the game. When you have gotten a few in-
structions under your belt, you can use the computer in two
different ways. '

These are called MODES. You will soon learn about Im-
mediate Mode and Programmed Modes...and how they
differ.

A program consists of a few specific elements. These in-
clude giving the computer information, telling it to store this
information in its MEMORY, telling it to do something with
this information and give you a result. Let’s run through a
“for instance” to see how a program works.

You could write a program that would have the computer
cut a recipe in thirds and give you the new measurements.
To write this program you would enter in the original recipe,

tell the computer to make exact calculations on this infor-
mation, then request that it print the results. Voila, a 4 |
program!

Once you have hooked up your Intellivision computer
system, you are ready to get started. Press | RESET | on the I

Master Component,.then press the | Disc | on the Hand
Controller and you see three main options listed on the TV
screen. This is called the Main Menu.

You will only be learning about BASIC in this guidelbook. To {
learn more about the cartridge and music options, turn to
page 15 in the Owner’s Guide.

Now, in order to choose
the BASIC option, press
Key then [ ENTER
on the hand confroller.
What better place tc

start than with a blank
screen!

: BASIC &> -"
: CARTRIDGE I
: MUSIC







In this mode, you can perform arithmetic operations, print
words and phrases, try out the functions and routines that
are built into the computer, and tell the computer to do
something with a program you have written. Each one of
these will be explained in this chapter.

In Immediate Mode when you give the computer instruc-
tions, you are giving it a COMMAND. It immediately exe-

cutes this command as soon as you press the RETURN Key
[RTN . No commands are stored.

Let’s type in a few commands and see how the computer
works. Then we'll explain what you have typed in! Begin by

pressing the Key.

By the way, if you make a mistake when typing in these ex-
amples, press and begin again.

B Type in the following just as you see it:
PRIN 5+6

PRIN stands for Print.
B Press the Key

B The computer understood the command and displays
the answer, 11.00

Let’s do another:
B Type in:
PRIN "HELLO”

B Press
B The computer displays HELLO

Cursor: You see a square at the left side of the screen. This
is called the CURSOR. The next letter or symbol you type in
will appear where the cursor is located on the screen. As
you type in information, the cursor moves.

NOTE: The computer won't accept the information you type
in if the cursor is flashing.

e —




Type in information: Use the keyboard keys, space bar and
shift just as in regular typing. Do not interchange the letters
O and L for the numbers zero and one! Be sure that each
line begins with the cursor at the far left side of the screen.

Pressing sends the cursor to this position. Now type in:

PRIN 10+ 10

RTN Key: In Immediate Mode the Return Key fells the com-
puter to immediately execute the command you just gave.
So now press [ RTN |, and you will see 20.00 on the screen.

Color Coding: Did you notice the squares behind your
command turned colors when you pressed [RIN |? These
colors are really helpful. If the computer understands what
you typed in, all the characters change color. But if some
characters remain black or turn gray, this lefs you know the
computer doesnt understand that command. For more in-
formation about color coding, turn fo page 36 in this book.

CHAPTER 1

You can correct or
change something you
have typed in. First position
the cursor where you want
to make the change. Do
this by using the arrow
keys. Each time you press
one of these keys, the
cursor moves one space.

If you want to make a correction before you press RIN, use
the left arrow key. Let’s fry this.

Press and type in:
PRIN “HELOO”
Now use the Key and move the cursor on top

of the first O. Nofice that the cursor erased the right quota-
tion mark and the two Os.




Now type in your correction:

LO”
Then press [ RTN |.

You can also make a correction affer you press [RIN |. To
do this, use any of the arrow keys to move the cursor where
you want to make the change. Now type in the correction,
then either type in everything that follows your correction
and press ...or use the right arrow key to move the
cursor beyond the last character in that line and press

[ RTN |...or simply press the or Arrow Keys.

For more information about arrow keys turn to “Making
Changes or Corrections” and “Special Editing Techniques”
in the Owner’s Guide. ;

ARITHMETIC KEYS

You will use these keys in BASIC to do arithmetic operations.

[+ Jtoadd Example: 10 + 5

[ = Jto subtract Example: 3 — 2

v’ e

[+ ]to multiply Example: 4 « 5
[[]to divide

The [ = ][« 1[/] symbols are called OPERATORS.

Example: 10/ 2

ARITHMETIC OPERATIONS

You can do simple or really complex arithmetic operations.

You can even combine operations in one expression. The
fricky part is knowing how to type in the expression so that
the computer calculates the answer in the order you want.

For example, if you type in 6 + 6 * 3, does the computer
calculate 6 + 6 first then multiply the result times 3 to get
367 Or does it multiply 6 times 3 and then add 6 to the
result, getting 24? The order in which the computer calcu-
lates the expression makes a difference in the answer you
get. -




— .

The computer calculates arithmetic operations in the
following order:

1. Any arithmetic operation within parentheses
2. Negation (a number with a negative value, like —3)
3. Multiplication and division

4. Addition and subtraction

For example, if you want the computer to add 2 + 2 then
multiply this result by 3, here’s how you would type it in:

PRIN (2+2)*3
Try this!

You will see that the computer rounds off numbers to 2
decimal points.

You cannot divide by zero!

There are mini programs called ROUTINES, and special
tools called FUNCTIONS built right into the computer. These
allow you to play with the objects in any Intellivision car-
tridge. They also allow you to create sound effects and
play with color or graphics in the games you develop.

Following are just a few examples of functions and routines
SO you can see how they work in Immediate Mode. We
won't be explaining what you are typing in. This comes
later. We only want you to see what's possible. You will get
the complete look at functions and routines in Chapter 9
starting on page 69, and in the Owner’s Guide on page
36.

e |




—’

Sound Effects: The following routine is an example of one
sound effect you can use. Type in:

E=8 Press [ RTN |
P=10 Press [ RIN |
& =10 Press [ RTN |
L = 10000 Press
CALL ENVN Press
When you want the sound to stop:
CALL HUSH Press

Colors: The following function will give you a color display
on your screen. Type in:

BK(20)=0 Press

A black square appears on the second line of the screen.

The cursor is at the fop left of the screen. Now type in this
next line right over the last:

BK(21) =1 Press

S

Continue typing one line over the other. Each will bring a
different color onto the screen.

BK(22)=2 Press ,
BK(23)=3 Press
BK(24) = 4 Press

Graphics: In order to work with the graphics, you must first
bring an object onfo the TV screen. Once the object is dis-
played, you can do all sorts of things with it. Following are
the routines that will display an object for 2 different
Intellivision game cartridges: BURGERTIME™* and NIGHT
STALKER™. (If you do not have any of these cartridges, turn
to page 37 in the Owner’s Guide and learn how to display
an object for a wide variety of Intellivision game
cartridges.)

|
|




DISPLAY AN OBJECT:

BurgerTime™* Night Stalker™

M =11 ME=5

N = 80 N = 22

0 =1 k="

DE==2 Dy =

CALL GRAB CALL GRAB

You will see the pickle. You will see a bat flying.

CHANGE COLOR:

Co(1)=7 Co(1)=13 Co(0)=6
ANIMATES OBJECT:
XV(1)=20 SQ(1)=25 SQ(1)=20

.]. REMEMBER, this is just a preview of the many
functions and routines built into your computer!

There are several commands which you will use in Im-
mediate Mode that do something to the screen or to a pro-
gram you have written. These commands are RUN, LIST, CLR
(Clear), NEW, DEL (Delete) and MENU.

Important, Until you have learned about the Pro-

grammed Mode, skip this section and turn fo

Chapter 2 on page 17. We will tell you when to
come back to this section.

Each of these commands must begin at the far left side of
the screen. This lets the computer know you are in Im-
mediate Mode. Also, these commands do not change col-

or when you press | RTN |.

CHAPTER 1




RUN When you have finished writing a program, type in
RUN and press | RTN |. This sets the program in action.

Example; type in:

10 PRIN “HAPPY” Press [RIN |
20 PRIN “BIRTHDAY” Press [ RTN |
30 PRIN “TO” Press [ RTN |
40 PRIN “YOU” Press [ RTN |
RUN Press [RTN |

You see HAPPY BIRTHDAY TO YOU on the screen.

LIST When you want to look at the program currently in the
computer’s memory, fype in LIST and press [RIN |. The first
12 lines of the program show on the screen. If there are
more than 12 lines in the program, the computer begins to
scroll the program...and the lines at the top move off the
screen and the remaining lines come on one at a time.

Example; type in:

LIST Press

You see the program you entered above.

You can also look at a certain line in a program. To do this,
type in LIST followed by the line you want to see.

Example: Let’s look at line 20 of our example program. To
do this, type in:

LIST 20
Press

and you see: 10 B
20
30
40
RUN
HAPPY
BIRTHDAY
TO
YOU
LIST 20
20 PRIN “"BIRTHDAY”
u

You can also look at a certain portion of a program. To do
this, type in LIST, followed by the line number of the first line
you want to see, a comma, and the line number of the last
line you want to see. In our example, to look at the first
three lines, you would type in:

LIST 10,30




Press and you see:
10 PRIN “HAPPY”
20 PRIN “BIRTHDAY”
‘\ 30 PRIN “TO”
You cannot type in LIST while a program is in the process of
w being run. Press the (Escape) Key and this stops the
! program. Then you can LIST.
You can make changes to a program once it is listed.

} Make a change as you did earlier, see arrow keys page 9,
‘ and line numbers page 20.

| CLEAR: When you want to clear the screen, type in CLR

and press . Whatever was on the screen is now gone.
‘ The cursor appears at the top left of the screen. Type in:
1 PRIN 2+ 2 Press
: PRIN5+3 Press
| PRIN “HOW ARE YOU” Press [ RTN |
] CLR Press

The screen is now clear, everything you typed is gone.

CHAPTER 1
i

If you have entered anything in Programmed Mode and
you use CLR, the screen is cleared, but the program is not
erased from the computer’s memory. CLR does not erase
the memory. It only erases what's on the screen. Type in:

10 PRIN “HELLO” Press
20 PRIN “HOW AREYOU”  Press
RUN Press
CLR Press
LIST Press

You see that your last program is sfill in the computer’s
memory.

Use the CLR command in a program: You can also use
the CLR command in a program. When the program is run,
the screen will go blank when it gefs the CLR command.

Type in:

10 PRIN “2+4+3=" Press
20PRIN2+3 Press
30CLR Press




40PRIN “5+5=" Press
50 PRIN 5 +5 Press
RUN

You see 2+3=5, the screen clears and you see 5+5=10
on the screen.

NEW When you type in NEW, the program in the computer’s

memory is erased. Oftentimes, when you are done with a
program, you will want to begin the next program with a
clean slate. To do this, type in NEW and press | RTN |.

Example; type in:

10 PRIN 2 + 2 Press [ RTN |
RUN Press
LIST Press
You see the program you just wrote. Now type in:
NEW Press
LIST Press

The program is no longer in the computer’s memory. When
you use the NEW command, the computer automatically
sets all variables equal to zero.

DELETE: There may be times that you want to delete certain
lines from a program. To delete one line, type in DEL fol-
lowed by the line number you want deleted.

To delete more than one line, type in DEL followed by the
first line you want deleted, a comma and the last line you
want deleted. When you press RTN, the computer deletes
the lines you listed and those inbetween.

Example: Let’s say your program covers lines 10 — 100,
numbering in increments of ten. Let’s also say that you
would like to delete lines 70, 80 and 90. Here’s what you
would type in:

Press

MENU: Look at page 57 in the Owner’s Guide to learn
about Menu.

DEL 70,90




10 PRIN 5+6




You will use Programmed Mode when you want the com- B Type in the following just as you see it:
puter to store different pieces of information, and have it

use that information to give you some result. 10 PRIN5+6 Press {

puter are called STATEMENTS. Several statements make up

a PROGRAM. You can write a very short program or write @ The computer calculates 5+ 6 and displays the

very long program. Your only limit is set by the amount of answer...11.00

memory you have to work with. Memory is the amount of in- '
formation the computer can hold. The Computer Adaptor ; : . f i
has 2K of random access memory (RAM) for you to use in LCEcoEneliEh Hoe i

In Programmed Mode the instructions you give the com- RUN Press {

Progiei e} 10 PRIN “HELLO”Press 1
The way you type in a line in Programmed Mode is different ]
than in Immediate Mode. In Programmed Mode, you start f Rigss

each line with a number, called a LINE NUMBER. This ;

number lets the computer know you are in Programmed Tcccmpaiar prints LELEORRIS scicoll ‘
Mode. .

Let’s type in two simple programs and see how this works.
The details will follow. Be sure the cursor is at the far left of f
the screen. Press [ RTN |,

e




Cursor & Arrow Keys: You use the
cursor and arrow keys the same

Line Numbers: Each statement in Programmed Mode must
begin with a line number. This is the computer’s cue that

’ you are in Programmed Mode. (All the information about

( line numbers is on page 20) Be sure that the cursor is at the
far left side of the screen. Now begin a statement by typing
in the line number. For example, type in:

10

( Type In A Statement: Type in the statement right after the
| line number. For example, type in:
|

PRIN “HELLO”

——eeeeeeee N

here as you did in Immediate Mode.

CHAPTER 2

Your statement will look like this:

10 PRIN “HELLO”

pmn| RETURN
RTN KEY

When you press the RTN Key in Programmed Mode you are
telling the computer to store the information just typed in.
This is different than in Immediate Mode. (Remember, when
you press RTN in Immediate Mode, the computer acts on
the command immediately.) In Programmed Mode, press-
ing RTN puts this information in a holding pattern until you
tell the computer to do something with it. You will press RTN
after you type in each line! For example, press now.

Check The Color Coding: Remember to look at the colors.
If every lefter and symbol turned color, the computer
understands your statement. If there are still black or gray
letters or symbols on the screen, use the Arrow Keys to posi-
tion the cursor, then make your correction. Then press
again. For more information on color coding, turn to
page 36 in this book.

RUN: When yoU have written all the statements, and the
program is completed, it's time to tell the computer to do
something with this program. To do this, you will type in-a




command in Immediate Mode. Remember this command NEW
has no line number! In our example, type in: J
10 PRIN “HELLO”
RUN RTN
30 PRIN “GOOD-BYE”

You now see HELLO on the screen. : ‘
Let's add a line, type in:

Additional information on line numbers is in Chapter 9 in LIST
the Owner’s Guide.

: You see that your line numbers are now in order.
Numbers You Can Use: The highest number you can use as {

a line number is 31999. Replace A Line Number: The computer will only save one
statement for each line number. So if you type in the same

Here are the particulars about line numbers: line number more than once, the last statement you typed i
in replaces the first. Let's try this in another example. Type in:
B Whole numbers only (Example: 2,3,10,100)
NEW
B Positive numbers only (Example: never use —10) {
10 PRIN “HELLO”
B Numbers only (Example: not 10B)
20 PRIN “HOW ARE YOU” {
Adding Line Numbers: A good rule of thumb is to use line |

numbers in increments of 10. This gives you the space 20 PRIN “WHAT IS YOUR NAME”

needed if you decide to insert a line later. Let’s see how

this works... ' 30 PRIN “SEE YOU LATER” ‘ ‘
For example, type in: LIST




e e

Here's what you'll see when you list this program:
{ 10 PRIN “HELLO”

20 PRIN “WHAT IS YOUR NAME”
\ 30 PRIN “SEE YOU LATER”

Each letter, number, symbol or space is one character. In
Immediate and Programmed Modes, you can type in a
maximum of 39 characters per line. The computer doesn’t
allow you to type a line longer than that. When you reach
this maximum line length, you must press RTN to continue

typing.

PRIN “BASIC IS A COM
PUTER LANGUAGE" N

You can type in 20 characters across your TV screen, then
the cursor automatically goes to the next line on the screen
and you can continue typing up to a total of 39 charac-
ters. For example, type in the following to see how this
works:

PRIN “BASIC IS A COMPUTER LANGUAGE”




Turn to page 23 in the Owner’s Guide for more information
on line length. ,

b RETURN KEY

Let's quickly recap the RTN Key! Press RTN in Immediate l
Mode and the computer takes immediate action. In Pro-

grammed Mode, you press RTN after you have completed ,
each statement. This pufs the information into the I
computer’'s memory. In both modes, pressing RTN sends the

cursor down fo the beginning of the next line.

Esc | ESCAPE KEY

Any time you want to interrupt the computer’s listing or
printing or running a program, press [ ESC |. !

Important: Now it's fime for you to go back to ‘
page 13 and learn about the Immediate Mode
commands you will use with a program.

—————————————— ¥
L .







Up to now we have talked about giving the computer
information. This information is called DATA. Now it's time to
learn the different kinds of data you can use. There are
constants and variables, and these are the nitty gritty

of BASIC.

When you write a program, you will want some data to re-
main the same any time you run the program. This is con-
stanf data. You will also want to use data that can change.
This is variable data.

As a simple example, you might write a program that asks
for a person’s name, then prints that name. In this case, you
always want the computer to ask “What is your name?”.
This question is constant data. Then you want the computer
to accept any name you type in and print it out. Because
the name you type in can change each time you run the
program, the name is variable data.

Constants and variables are further broken down. You can
use two kinds of constants and two kinds of variables:
B Numeric constants B String constants

B Numeric variables B String variables

Numeric data is numbers only. String data is a combination
of numeric characters, lefters and symbols.

If this information about constants and variables is brand
new to you, read this chapter carefully and the one that
follows. Be prepared to go back to re-learn this information
until it becomes second nature to you.

Whenever you want to use data over and over and never
have it change, you will be using constants. Constants do
just what the name implies...they do not change! There are
two kinds of constants you can use: numeric constants and
string constants.

WHAT ARE NUMERIC CONSTANTS?

The numbers you use in an arithmetic operation are called
numeric constants. A numeric constant is always a number.

A numeric constant can be any of the following:

B Whole number (Example: 3 45 500)

B Negative number (Example: —6 —23)




B Decimal number, negative or positive (Example: 3.4
-5.6)

B A number larger than 999999, expressed in scientific
notationt (3.2E06 is scientific notation for 3200000)

B A number smaller than .000001 expressed in scientific
notationt (9E-07 is scientific notation for .0000009)

How To Use Numeric Constants: Numeric constants are
always used in an arithmetic operation. You can add, sub-
fract, multiply and divide numeric constants.

For example:

PRIN 3+7

The 3 and 7 are numeric constants. Their numeric values
always stay the same...3 and 7. ]

tIntellivision scientific notation numbers can have 3
numeric digits left of the E (3 significant figures), and the ex-
ponent goes from +72 to —70.

WHAT ARE STRING CONSTANTS?

Whatever letters, numibers or symbols you enclose in quota-
fion marks is a string constant. This is also called a literal
string. Whatever you type within quotes is printed that way
each time you run the program.

A string constant can be any of the following:

B Numbers only (Example: “50” “4")

B Letters only (Example: “HI” “WHAT")

B Combination of lefters, numbers and symbols (Example:
“2+2 EQUALS")

How To Use String Constants: Whenever you want some-
thing to appear exactly as you type it in, you will use string
constants, String constants can never be used in an arith-
metic operation.

For example:

PRIN “HELLO”

Since HELLO is typed within quotation marks, it is a string
constant,




Combine Numeric & String Constants In The Same If you use a numeric constant, the program would look

Program like this: %

10 PRIN “WHAT IS 2 +27?” 10 PRIN 100 + (100+.1)

20 PRIN 2+2 STRING CONSTANTS Here the computer would calculate 10% of 100, add this - j
'\ amount fo 100 and give you the result of 110. This program

RUN NUMERIC CONSTANTS would only add 10% to the constant you use. if you want to

know the result of adding 10% to ten different numbers, you |
When you run this program, the computer will print out the would have to write this program a fotal of ten times...once l
string constant WHAT IS 2+ 27, then prints the calculation of  for each number.
the numeric constants 2+2 and displays the answer, 4.

But if you use a numeric variable in this program, you can (

use this same program over and over! The program would
look like this:

Variables identify data that may change. There are two 10 INPU B
kinds of variables you can use: numeric variables and . j
string variables. 20 PRIN B +(B*.1)

B is the numeric variable that stands for any number you f
WHAT ARE NUMERIC VARIABLES? want. Here the computer is prepared to calculate 10% of {
any number, add this amount to the numioer and give you
; : the result. INPU B means fo type in a numiber. B equals the
A numeric variable stands for a number that may change. number you type in, If you fype in 200, the computer knows !
B=200, so it will give you the result 220. If you next type in
300, the computer knows B=300, so it will give you the
result 330. B always stands for a number, but the number l

can change. |

As an example of this, let’s say you want a program to add
10% to a certain numibber and give you the result. This pro-

gram can be written using constants or variables. Let’s see
how variables make this a much more versatile program.

J




l CHAPTER 3
|

A numeric variable can be any of the following: WHAT ARE STRING VARIABLES?

\ B Any single lefter from A — Z A string variable stands for a string that may change.
How To Use Numeric Variables: A numeric variable stands
for a number. Therefore you will always use a numeric
variable in arithmetic operations. You can add, subtract,
multiply and divide numeric variables. The computer

, always uses the current numeric value for the variable.

As an example of this, let's say you want a program to print
HELLO followed by a name. Let's compare a program using
a constant and a program using a variable.

If you use a string constant, the program would look like
this:
For example:

10 P “HEL Y
PRIN B 1 0 PRIN “HELLO MAR

: When you use constants, the computer will only print the
Here the computer would multiply the current value for the string constant you use. Here the computer would print

numeric variable B times the numeric constant .10. HELLO MARY. If you want 1o print HELLO JOHN or HELLO
ANN, you would have to write this program again for each
name you want. i

But if you use a string variable in this program, you can use
this same program over and over. The program would look
like this:

10 GET A$

20 PRIN “HELLO”
J 30 PUT A$




AS is the string variable that stands for any string constant
you want (up to 20 characters). Here A$ stands for any
name you want. GET AS tells you to type in a name. The
name you type in is stored in the string variable AS. Next
the computer prints HELLO. Then PUT A$ tells the computer
to print the name stored in AS.

Affer you type in the program, and type RUN, you can type
in a name. If you type in ANN, then A$=ANN, and the com-
puter would print out HELLO ANN. If you next type in FRANK,
the computer would print out HELLO FRANK. Here the string
variable AS always stands for a name, but the name can
change.

Important: GET and PUT will be more fully explained in the
next chapter.

A string variable can only be:
B AS BS C$

How To Use String Variables: You will use string variables
just like string constants. String variables cannot be used in
arithmetic operations. The computer always uses the cur-
rent value for the variable,

For example:
PUT A3

PUT means “print” in string variables. Here the computer
would print the current value for the string variable AS.

Numeric & String Variables Are Combined In The Same
Program:

10 PRIN “MY NAME IS”
20 GET A$ \STRING CONSTANT
30 PRIN “HELLO” STRING VARIABLE

40 PUT A$
50 PRIN “HOW OLD ARE YOU?”

60 INPU A NUMERIC VARIABLE

70 PRIN “l AM”,A
80 PRIN “YEARS OLD”

When you run this program the computer prints the string
constant MY NAME IS, then waits for you to type in a name
to be stored in the string variable AS. The computer then
prints HELLO followed by the name you typed in. The com-
puter next prints HOW OLD ARE YOU and waits for you to
type in a number to be stored in the numeric variable A.
The computer prints | AM, followed by the number you
typed in, followed by YEARS OLD.

Important: GET, PUT and INPU will be more fully explained in
the next chapter.







You have learned what numeric variables and string
variables are...now it's fime to learn how to assign values to
these variables.

Assigning means fo give something a value. For example, if
you assign the numeric variable A with the value of 2, you

would write it as: A=2. When you assign a value to a vari-
able, the computer stores this information.

You can assign a value to a numeric variable or a string

variable. You can assign a value to a variable when you
write a program or when you run a program.

.]. Remember, a numeric variable must always
stand for a number!

ASSIGN A VALUE WHEN YOU WRITE A PROGRAM

You can assign a value to a numeric variable when you
write a program.

For example:
NEW
100NA=5

20 B=10

30 PRIN A+B
RUN

This program has two numeric variables, and the values for
each are written right info the program. A is equal to 5 and
B is equal to 10.

ey
BW//4 Note: You can also assign a value to a numeric
B\ ricble in Immediate Mode. This saves memory
space as you don’t have to store this information
with a line number.

For example:
NEW

A=5

B=10

10 PRIN A+B
RUN




USE INPU (INPUT) TO ASSIGN A VALUE
| WHEN YOU RUN A PROGRAM

\ You can also assign a value to a numeric variable when
you run a program. Do this by using the Input Statement,
INPU. This fells the computer to stop running the program so
thaf you can enfer a number, and assigns the numiber you
enter to the variable.

( For example:
: NEW
10 PRIN “HOW OLD ARE YOU?”
20 INPU A
\ 30 PRIN “YOU ARE”, A
"RUN

] Here's how the computer will run this program:

10 The Keyword PRIN tells the computer to print the string
( constant, “HOW OLD ARE YOU?" on the screen. .

20 INPU tells the computer to STOP and waits for you to enter
a number. Here A stands for your age. The cursor is at the
far left of the screen and the computer is waiting for you to
type in your age. Type in your age and press [ RTN ]. The
number you type in is stored in the numeric variable A.

CHAPTER 4

30 Then the computer prints the string constant “YOU ARE”’
and the value for the numeric variable, A. (That’s the number
you just typed in.)

YOU CAN USE INPU WITHOUT USING
THE PRINT STATEMENT

Let’s see how this is done:

Type in this same example another way:

NEW

10 INPU “HOW OLD ARE YOU?”, A

20 PRIN “YOU ARE”, A

RUN

Here's how the computer will run this program:

10 The computer prints HOW OLD ARE YOU?, then waits for
you to input your age.

20 The computer prints YOU ARE, then prints the value of A.
Here’s another example of input:

NEW
10 INPU “ENTER BALANCE”, B




—1

201 =B=*.1 INPU may be followed by one string constant, up to 20
characters long, with 1 or more numeric variables. |
30 PRIN “YOUR INTEREST IS”, | For example: INPU “THE NUMBERS ARE”, A,B l

10 The computer prints ENTER BALANCE and waits for you to
input a number for the variable B.

20 The variable | stands for interest. Here interest equals
aams ey USE SET TO ASSIGN A VALUE WHEN YOU WRITE A
PROGRAM
30 The computer prints YOUR INTEREST IS and prints the value ‘
for 1. You must use a SET statement to assign a value to a string
: . variable. AND you must use the PUT statement to print a |
string variable. SET assigns a value...PUT prints the value of |
Important: : the string variable. For example: i
NEW R
B A numeric variable can be set equal to a numeric con- ]
stant, (Example: A=5) 10 SET A$ = “HELLO” ‘
B A numeric variable can be set equal to another numeric 20 PUT A$
variable 1
(Example: A=B) RUN
W A numeric voljioblelcon e se’r‘equcl fo cnoThe[ numeric 10 SET A3 assigns the string constant “HELLQO” to the string [
constant plus, minus, times, or divided by a numeric variable A$ i
variable ; ;
(Example: A=5+B) 20 PUT AS$ tells the computer to print the value for A$. Here it
will print HELLO. {

INPU may be followed by from 1 to 7 variables.
For example: INPU A,B,C

_—




| 4
- B/ /4 Note: You can also assign a value to a string
‘; B\ rigble in Immediate Mode. This saves memory

space.
For example:
SET A$=“INTEREST”

USE GET TO ASSIGN A VALUE WHEN YOU RUN A
PROGRAM

You will use the GET statement to assign a value o a string
variable. Again, the PUT statement is used to print a string
variable. When the computer runs your program it stops at
your GET statement and waits for you to assign a value to a
string variable. (This is just like INPU for a string variable.)

For example:

NEW

10 PRIN “WHAT IS YOUR NAME?”
20 GET A3

30 PRIN “HELLO”

40 PUT A$

RUN

Here’s how the computer will run this program:

10 The Keyword PRIN tells the computer to print the string con-
stant “"WHAT IS YOUR NAME?".

20 GET tells the computer to get the value for the string variable
A$. It waits until you type in your name (a string constant).
Type in your name and press [ RIN |. The computer now
stores your name as the string variable, A$.

30 Then the computer prints the string constant “YOUR NAME
IS’!

40 and prints the value for the string variable A$ (that’s the
name you just typed in.)

e

BW//4 Note: GET and PUT statéements may be followed
by one string variable. A string variable can be
assigned a value up to 20 characters long.

y |
@ Important:

B A string variable can be set equal fo a string constant.
Example:

SET A$ =“HELLO”

CHAPTER 4




T T e e SR

B One character of a string variable may be set equal to
one character of another string variable.

Example:

SET A$=“ABC”
SEB$=5:123%

A$(1) =B$(2)

B One character of a string variable may be set equal to
a numeric constant, using numbers from 0-63.

Example:
A$(1)=20

It's Break Timel Time fo get up and stretch, fix yourself a
snack...take time out to play an Intellivision game. Don't try
to learn too much all at once. Pace this out so you don’t
get overwhelmed!

MY g, =

—_l\\ Ogj\\m

Let’s get down fo the nuts and bolts of the keyword PRIN.
You have now used PRIN in Immediate Mode and Program-
med Modes. [n both, you can use the keyword PRIN in three
different ways.

Use PRIN With String Constants:

You can only have 1 string constant per PRIN statement.
Example:

PRIN “2 APPLES”

Use PRIN With Numeric Constants:

You can use from 0-6 operators with a PRIN statement ( +

— A0 )
Example:

PRIN6+6,3-24+5




Example:
| PRIN A,B,C
You can also use PRIN with a combination of a string con-

stant and a numeric variable...and a string constant and
an arithmetic operation.

Example:
l 10 PRIN “THE ANSWER IS”, 6 +7
10 PRIN “THE ANSWER IS”, A,B

I If you want to print a string constant and forget fo enclose it
: in quotation marks, the computer interprets your sfring as
43 an arithmetic expression, and will print whatever value it
l has. For example, if you meant to type PRIN "HELLO”, but
i you typed in PRIN HELLO, the computer understands PRIN H
and prints out the value of H. If you haven't assigned a
‘ value to H, it will print out 0.00.

In this example, the color coding would be:

} PRIN, black on pink background (for a BASIC Keyword)

H, black on yellow background (for a numeric variable)

CHAPTER 4 ’

ELLO, black on green (for information not understood)

If you want to print an equation and mistakingly enclose it
in quotations, it will be treated as a string constant. For
example, if you wanted the computer to add 2+2, but you
mistakingly fyped in PRIN “2+2", the computer prints 2+2.

In Immediate Mode, the constant or equation following
PRIN is immediately printed on the screen once the RTN Key
is pressed.

Example:
PRIN “WHAT IS YOUR NAME”
PRIN 30 — 11

In Programmed Mode, the constant or equation following
PRIN is stored information until the program is run.

Example:
10 PRIN A+B
20 PRIN 30 -11




Color coding is helpful in both Immediate and Program-
med Modes. Each element in a line is designed to turn a
specific color once you press RTN. For example, a line
number turns to tan characters on a green background. To
see which colors all the elements should turn, turn fo page
85 in the Owner’s Guide.

Color Coding lets you see whether the computer has
understood what you typed in or not. After you press
[RTN |, look to see if every character in the line has turned
color. If it did, this means that the computer understood
what you typed. For example, type in PRIN 1+ 1. Press

and everything turned color.

If you press RTN and only some of the characters are col-
ored, the computer didn’t understand some things, but
made sense out of your line and proceeds. For example,
type in PRIN 1+ +1. Press [ RTN_| and everything turned col-
or except the second + symbol. It’s still black.
@ type a statement or command incorrectly, the
computer may recognize enough to execute it in
a different way than you intended. For example, if you type
PRIN AS, the computer will color PRIN A. It will then look for
a numeric value of A, If it does not find one, it will assume a
value of zero and print 0.00. It will not print the string value

of AS, since you must use the PUT keyword to print a string
variable.

Important: Color coding is not fool proof! If you

When the computer can’t make any sense out of your line,
the characters remain black or some may turn gray. For ex-
ample, type in PRI 1+1. Press and the P turned gray.
Everything else is still black. The computer doesn’t under-
stand PRI. It tried to figure it out and notes this by turning P
gray. You must correct this line. It is not correct until the
characters turn color.

When you LIST or RUN a program, any lines that the com-
puter cannot make sense of, and are non-executable, turn
to white characters instead of black. Retype these lines or
delete them using DEL.




Intellivision BASIC uses commas, quotation marks and
parentheses.

Commas are used to separate elements in a command or
statement.

For example:
PRIN 2+4,3+6
Quotation marks enclose string constants.

For example:
PRIN “BASIC IS A COMPUTER LANGUAGE”

Parentheses enclose the argument of a function or the con-
dition of an IF statement.

For example:

10 BK(20)=3
10 IF (A=20) GOTO 30

Turn to page 77 in the Owner’s Guide for more information
about punctuation.

CHAPTER 4

In general, if you use the same constant more than three
fimes, it will save memory to assign it fo a variable. Turn to
page 84 in the Owner’s Guide for more information on
memory. )










So far, programs have been pretty straight forward. The
computer marches straight ahead, reading your statements
one at a time. Once it has completed one line, it auto-

matically goes to the next, unless told to go somewhere GOTO does exactly what it says. It tells the computer to go

else. to some other place. The thing to remember is that it ‘
doesn't tell the computer to come back. Since the com- }

Now you can break away from that straight ahead puter needs to know the line to go to, the GOTO command i

pattern.. flip forward or backward in a program. When you s followed by a line number.
send the computer somewhere to repeat a group of state- ‘
ments, you have created a LOOP. Let’s take a look at Example: t
GOTO and learn about loops.

GOTO 30

Let's try a GOTO statement. This example is the same as the l
one you learned on page 33. Now by using GOTO, the pro-
gram can continue indefinitely.

NEW i
10 PRIN “WHAT IS YOUR NAME?”

20 GET A$ :

30 PRIN “HELLO”

40 PUT A$

50 GOTO 10 <
RUN |




N CHAPTER 5
|

10 When you run this program, the computer prints the string Here’s how the computer will run this program: \
constant WHAT IS YOUR NAME ’
10 The computer prints ENTER BALANCE and waits for you to ‘

“ 20 It waits for you to type in your name. Then press |_RTN |. enter a number. This number is stored under the numeric
s Your name is stored in the string variable AS. variable, B. For example, type in 30 and press _RTN |.

1

| 30 Next it prints HELLO 20 The computer calculates your interest (the balance times

10%) and stores this in the numeric variable |.
| 40 It follows HELLO by printing the value of A$ (your name)
| ‘ 30 The computer prints YOUR INTEREST IS followed by the

\ 50 Then the computer goes back to the beginning...over and value of |.
over again.
{ : 40 The program begins again..Enter another number for B and
This is called a PERPETUAL LOOP. To get out of a perpestual the interest figure will change.
loop, press the (Escape) Key.
Here’s another example of GOTO: : Important: GOTO is not always used in @
perpetual loop. You can use GOTO to send the
NEW computer to another part of a program. This is
J called Branching. You will learn abouf the different types of
| 10 INPU “ENTER BALANCE”, B branching starting on page 47.
20 il&=: Br=:1l

. 30 PRIN “YOUR INTEREST IS, |
40 GOTO 10
C RUN

1—_—-—___'.'__—__—__—
—-




The FOR...NEXT statement allows you to repeat something a
certain number of times. In other words, it allows the com-
puter to count. Once the computer makes the loop the
specified number of times, it then goes on with the rest of
the program.

The FOR and NEXT statements work together. The FOR state-
ment begins a loop and sets a starting value for the
numeric variable. We will use the numeric variable N. It
also sets the maximum value N can have. The starting and
ending values can be numeric constants or variables.

Once the loop is begun, the FOR statement checks to see if
the value of N is greater than the maximum value. If the
value of N is less than the maximum value, it continues the
loop. When the value of N is more than the maximum
value, it goes on to the statement in the program following
the NEXT statement,

The NEXT statement does two things. It adds 1 to the current
value of N and sends the computer back to the FOR state-
ment,

The statements that fall within the For...Next will repeat
each time the loop is executed.

In its simplest form, the FOR...NEXT is used only to count.
There are no statements in between FOR and NEXT. This is
called a TIME DELAY LOOP.

For example:
10 FORN =2TO5
20 NEXT N

10 In the first loop, FOR sets the starting value of N at 2 and
the ending value at 5. FOR looks to see if N (now 2) is
greater than 5. It is less, so the loop continues.

20 The NEXT statement adds 1 to N A(now N =3) and sends it
back to FOR in line 10.

10 FOR sees if N is greater than the end value. It is not, so the
loop continues.

This loop will repeat 4 times. It will count 2,3,4,5. Once the
NEXT statement makes N equal 6 the FOR statement sees
that this is greater than 5 and the loop ends. It uses the
values of N fo count. This is useful in a program where you
want to create a delay before continuing with the
program.

In our next example, the FOR...NEXT statement is used to
count and print out the numbers that it's counting too.




For example:

; NEW

10
} 20
30
40

;; 10

20

30

10

20
30

FORN=1TO 5

PRIN N

NEXT N

END
FOR gives N the values of 1,2,3,4,5. It will carry out 5 loops.
It looks to see if the current value of N is greater than 5. If it

is less, it goes to the next line.

The computer prints the current value of N. During the first
loop it will print 1. :

NEXT adds 1 to the value of N (now N =2) and sends it
back to the FOR statement.

The computer looks to see if the current value of N is
greater than 5. If it is less, it goes to the next line.

The computer prints 2.

NEXT adds 1 to N (Now N =3). Since it is less than 5, the
loop continues.

The computer will print 1,2,3,4,5 in a column on the screen.
Once the value of N reaches 6, the FOR...NEXT loop ends
and the computer goes to the line following NEXT.

In this next example, the computer counts the numiber of
times other statements are made.

For example:

‘NEW

10 FORN=1TO 5
20 PRIN “HELLO”
30 NEXT N

Here the FOR statement is used fo count the number of
times the computer will print out HELLO.




In this example, the computer counts the number of times
you assign a value to the numeric variable A.

For example:

10 FORN=1TO 5
20 INPU A

30 PRIN A

40 NEXT N

This program lets you input a numiber then it prints it. This

will repeat five times.
.]. puter always keeps frack of the number of times

the loop is executed. The computer also assigns
a value to N and the value increments each time the loop
is executed. You can use any numeric variable, we just
happened to pick N.

Remember: In a FOR...NEXT statement the com-

Here we'll take the simple program we used in GOTO on
page 41 and change it...so that it becomes a more useful
program using the FOR...NEXT statement. Here the
FOR...NEXT is used only to count. Now you can enter in your
original balance, the computer computes the interest, then
it adds the interest to give you a new balance. It will do this
12 times. This is inferest for a year, compounded monthly at
10% interest. Type in:

NEW

10 INPU “ENTER BALANCE”, B

20 FORN=1TO 12

30 I=B * .1

40 B=B + |

50 PRIN “YOUR INTEREST IS”, |

60 PRIN “YOUR BALANCE IS”, B

70 NEXT N

RUN




10 The computer prints out ENTER BALANCE and waits for you
to input a number for the variable B.

20 In this program the For statement is used as a counter...it
will repeat the loop 12 times.

30 You tell the computer that | (interest) equals the balance
times 10%.

[ 40 You tell the computer that B (balance) equals the balance
f plus the interest. You will continually come up with a new
value for B because the balance changes each loop.

‘f 50 The computer prints out YOUR INTEREST and calculates the
| interest for the current value of B and prints it out.

60 The computer prints YOUR BALANCE and calculates the
balance by adding the interest to the current value of B. -

70 The computer takes the latest value of B and goes to the
( next FOR statement and begins the loop again.

NESTED FOR...NEXT

When there is a FOR...NEXT statement within another
FOR...NEXT, you have a nested FOR...NEXT statement.

Here is an example of a nested FOR...NEXT.

10 FORA=1TO 5

20-PRIN “HELLO™

30 FORB=1TO 3—
— PRIMARY FOR...NEXT

40 PRIN “BASIC” — NESTED FOR...NEXT

50 NEXT B

60 NEXT A

RUN

CHAPTER 5 ‘

—

|




TR R T e e R R R A T P A WA e B
s e e e s i e e e e e e e e
The first FOR statement sets up a loop to repeat 5 times. It l

will print HELLO. Before it gets to its companion NEXT state- ;

ment, the computer encounters a nested FOR...NEXT on {

lines 30-50. This will print BASIC three times. Once this is ‘
completed, the computer goes to line 60 and reads the

NEXT statement for the original FOR...NEXT. The loop con- ‘

. tinues. You will see the following printed 5 times: J

HELLO
BASIC ' |
BASIC
BASIC




L
s
o
o
o
|0

P e




In the GOTO and FOR...NEXT statements you told the com-
puter to stop moving straight ahead and to take a little
detour. These were simple loops. Any time you send the
computer somewhere else, you are giving it BRANCHING in-
structions. Now your branching programs can get even
more interesting.

You can tell the computer o go somewhere no matter
what...that’s UNCONDITIONAL BRANCHING. OR you can tell
the computer to check the facts, if one thing is true, go one
place. If not, go to another place. This is called
CONDITIONAL BRANCHING.

The computer can evaluate whether something is equal to
another, greater or less than another. When you use condi-
tional instructions, you will use the following symbols, called
RELATIONAL OPERATORS:

= means equal to

> means greater than

< means less than

The IF...statement is a conditional instruction. You will use
this fo make evaluations.

For example:
10 IF (A=20) GOTO 70

(A=20) is an expression

GOTO 70 is the course of action
In our example, the computer looks at the value of A. If A
equals 20, it evaluates the expression as true. Then it goes
on to line 70. If A does not equal 20, the program con-

tinues.

You can use IF...with all key statements except FOR...NEXT,
DATA, DIM and REM. Here are other examples of IF...

10 IF (A=0) END
10 IF (B=1) PRIN A
10 IF(A=16) A=0




CHAPTER 6

30 If your answer is correct (A= 11), the computer skips to line ‘

[Eoncg
f Y/ /4 60.
] B \ote. You can only use one IF...statement per [
‘ line. 40 If your answer is more than or less than 11, the computer

: automatically goes to line 40 and prints out TRY AGAIN. \
f Let’s try the IF...statement in a sample program:
\ 50 When your answer is incorrect, the program goes to line 10
\ NEW SO you can do it over again.

" 10 PRIN “WHAT IS 5 +6?” 60 Once you give the correct answer, the computer prints out [
THAT'S RIGHT!
20 INPU A

70 Then the program ends.
; 30 IF (A=11) GOTO 60

40 PRIN “TRY AGAIN” Remember: The computer reads your program
.] . line for line. Once it has completed one line it

50 GOTO 10 automatically goes o the next, unless told to go

somewhere else,

60 PRIN “THAT’S RIGHT”

Let's take the last example program a step further. There

‘[ 70 END are now two arithmetic operations in this program.
Let’s go through this program one step at a time: NEW

‘x 10 First the computer prints out WHAT IS 5 + 62 10 PRIN “WHAT IS 5+6?”

\‘ 20 The cursor is on the next line waiting for you to type in a 20 INPU A

number for the numeric variable A (Here A=5 + 6)

30 IF (A=11) GOTO 60




40 PRIN “TRY AGAIN”

50 GOTO 10

60 PRIN “THAT’S RIGHT!”

70 PRIN “WHAT IS 20 + 11?”

80 INPU B

90 IF (B=31) GOTO 120

100 PRIN “TRY AGAIN”

110 GOTO 70

120 PRIN “THAT’S RIGHT!”

130 END

Here's what's happening:

10
20

30

The computer prints out WHAT IS 5+ 6?

Again, the computer waits for you to enter a number to store
in the numeric variable A.

If your answer is correct, the computer goes to line 60 and
continues.

40

50
60
70

80

If your answer is not correct, the computer automatically
goes to this next line and prints TRY AGAIN.

The computer goes back to line 10 for you to try again...
The computer prints THAT'S RIGHT.

You see the next arithmetic problem on the screen: WHAT
IS20+11?

Now you input your answer and it’s stored in the variable B.

90-120 Continues as 30-60 above.

130 The program ends once you have answered both problems
correctly.




Here's another sample program that is a sevens multiplica-
fion quiz. The FOR...NEXT here counts and uses the value of
N as the multiplier.

NEW

10 PRIN “SEVENS TIMES TABLES”
20 FORN=1TO 12

30 PRIN “WHAT IS 7 TIMES”
40 PRIN N

50 INPUY

60 Z=N =7

70 IF (Y=2) GOTO 100

80 PRIN “TRY AGAIN”

90 GOTO 30

100 PRIN “RIGHT”

110 NEXT N

Let’s go through this step-by-step:

10 The computer types out the title of the program.

20 The computer knows this loop will repeat 12 times.

30 The computer asks the question, WHAT IS 7 TIMES

40 The first value of N is printed on the next line...1

50 The computer stops at Y and waits for you to type in the
answer to 1 = 7. (Y now is the numeric variable that stands
for 1+7. Here Y should equal 7.)

60 The answer will always equal Z.

70 If you are correct you GOTO 100. If you are incorrect you
automatically go to 80.

80 The computer prints TRY AGAIN.
90 GOTO 30 and do this one again.
100 The computer tells you the answer you typed in was correct.

110 Now the computer gives N the next value, this time it’s 2,
and goes back to line 20.

CHAPTER 6




40 The current value for N is printed out...2. For example, let’s build onto the program on page 51 and
create a program that has two multiplication quizzes. This

50 Now you must input a number for Y (Here Y is the numeric program first goes through the sevens tables, then through ‘

variable that stands for 2+7. Here Y should equal 14.) the nines. Both of these quizzes will use the subroutine from
{ lines 130 through 180. But you only have to write this sub-
...and so on until you have completed 12+7 correctly. routine once in the program. |

NEW

10 PRIN “TIMES TABLE” ‘
Once you start to write rather lengthy programs, you need
all the short cuts you can find. Sometimes you will use the 20 T=7
same instructions more than once in a program. Instead of
typing them in over and over, you can type them in once 30 FORN=1TO 12 [
and tell the computer to read these instructions whenever
you want, This is called a SUBROUTINE. Once the computer 40 PRIN “WHAT IS 7 TIMES”
has completed a subroutine, it goes back to the progra \
where it left off, ; 50 GSUB 130 [

To get to a subroutine, you will use the Gosub (GSUB) state- 60 NEXT N
ment, followed by the line number of the first line of the r
subroutine. The last line in a subroutine must always be RET 70 T=9

(Return). This sends the computer back to the line following

the GOSUB statement from which it just left, 80 FORN=1TO 12

90 PRIN “WHAT IS 9 TIMES” |

100 GSUB 130

110 NEXT N




120 END
! 125 REM STARTING THE SUBROUTINE
130 PRIN N
140 INPU Y
150 Z=N+T
l 160 IF (Y=2) GOTO 190
170 PRIN “TRY AGAIN”
180 GOTO 130
190 PRIN “RIGHT”
200 RET
Let's go through this program step-by-step:
10 The computer prints the title TIMES TABLE.

i 20 This gives the computer information. T=7 (T is the

multiplier).

30 (Here’s the beginning of the first For...Next statement. ) N will
! be used as a counter. But look down to line 130. N will also
use its values, 1 — 12 as the multiplicands.

{
—

40 The computer prints out WHAT IS 7 TIMES.

50 The computer is sent to line 130.

RUN
TIMES TABLE
WHAT IS 7 TIMES

1.00

125 It's always a good practice to begin a subroutine with a
REMARK statement. For details on REM, turn to page 58.

130 The subroutine begins here. Here the computer prints the
first value of N.....1

140 You type in a number and it’s stored in the variable Y.

150 The computer checks to see if Z (the answer) equals the
value of N = 7,




200

60

70

160 If the number you typed in for Y equals Z, then go to line

190.

The last statement in a subroutine is always RET for Return.
This lets the computer know that the subroutine has ended
and sends it back to the main routine...to the statement im-
mediately following the GSUB statement from which it left.

Here it will go back to line 60.

Now the loop begins again, with the value of N now 2. When
the sevens time tables are done correctly the computer goes

to line 70.

The numeric variable T is now given the value of 9. The
steps now continue as the nines time table quiz gets into ac-
tion. When all the nines are correctly completed, the pro-

gram ends.

You have just learned that a subroutine branches off from

the main routine. You can also branch off from other sub-
routines. This is called NESTING. Here’s an example:

10 PRIN “STARTING”
20 PRIN “GOSUB 100”
30 GSUB 100

40 PRIN “ALL DONE”
50 END

100 PRIN “AT 100”

110 PRIN “GOSUB 200~
120 GSUB 200

130 PRIN “RETURN AT 140”
140 RET

200 PRIN “AT 200"

210 PRIN “RETURN AT 220"

L— NESTED SUBROUTINE




220 RET

Follow along and see how the computer will read this
program:

10 It begins by printing out STARTING

20 The computer prints out GOSUB 100

30 The computer goes to the subroutine on line 100.
100 The computer prints out AT 100.

110 The computer prints out GOSUB 200.

120 This tells the computer to go to the nested subroutine on
line 200.

200 The computer prints out AT 200

210 The computer prints out RETURN TO 220

220 The RET command sends the computer back to the next
statement following the GSUB statement it last came

from...in this case it goes to line 130.

130 The computer prints out RETURN AT 140

140 This sends the computer to the statement following the first

GSUB statement...in this case it goes to line 40.

40 The computer prints ALL DONE

50 The program ends.

Here’s another example of a nested subroutine.
B The major program covers lines 10-50

B The subroutine covers lines 100-130

B The nested subroutine covers lines 200 and 210
Follow line for line and see how this works.

10 FORA=2TO 4

20 REM COMPUTE A+2+3 AND PRINT

30 GSUB 100

40 NEXT A

50 END

100 REM SETCTO A*2+3

110 GSUB 200

120 PRIN A,C

CHAPTER 6




10 This sets up a loop that will repeat 3 times and gives the
values 2, 3 and 4 to A.

20 REM stands for Remark*. This is used as a note to
yourself. Here it tells you what GSUB 100 is going to do. A
Remark statement prints out when you LIST, it does not
print when you run a program.

30 The computer goes to the subroutine on line 100.

100 Remark reminds you that this subroutine will compute
A2 +3.

110 This tells the computer to go to the nested subroutine on .

line 200.
130 RET 200 The computer makes C equal to A*2 + 3. '
200 C=A*2+3 - 210 The computer returns to line 120.

210 RET 120 The computer prints the values for A and C. (In the first {
loop you will see 2 and 7.)

130 This sends the computer to line 40. ’
40 The loop increments and continues. ‘

50 Once the 3 loops are completed the program ends. ’

*For more information about REM (Remark), turn to page 55 in the Owner’s Guide.




I

-nliligigll!




READ...DATA comes in really handy when you want to use a
lot of numeric constants in an efficient way.

Up until now you have assigned one number to one
numeric variable. For example, if you wanted to use the
numbers 2, 3, 4, 5, 6, you would have written a program
assigning each number fo a different numeric variable.

A=2 B=3 C=4 D=5 E=6

Now you can use one numeric variable several fimes in a
program and give it a different value each time you use it.
With a Read...Data statement you can store up to seven
numbers in a Data statement, and assign them to only one
variable. To use all these numbers you use the READ state-
ment. You will separate the numbers with a comma.

For example:

60 REM THE FOLLOWING IS AN EXAMPLE ONLY...NOT A
PROGRAM.

70 READ X

75 PRIN X

80 GOTO 70

90 DATA 2, 3,4,5,6

Here X will stand for five different numbers. First X=2, then
X=3, then X=4, then X=5, then X=6.

Data: Stores numeric constants in a particular order.

Read: Looks for information in the Data statement and
assigns that data to a variable or variables. It rememibers
which number it last read from the Data statement and
looks for the next number.

Let’s look at a simple program where the computer will
print out five numibers, and see how READ...DATA works.

For example; type in:
NEW

10 FORN=1TO 5
20 READ X




30

\ 40
50

| 10

‘ 20

30

40

| 50

e e

PRIN X
NEXT N
DATA 2,9,777,51,45
This sets up a loop that will repeat five times.
The numeric variable X is assigned to the numbers in the
Data statement. When the computer sees READ, it looks for

information in the Data statement.

Prin X tells the computer to print the current value of X. In
the first loop, X =2; in the second loop X =9 and so on.

Next N tells the computer to begin the loop again...read and
print the next value of X. Each time the Read statement is
executed, the next number in the data statement is read and
assigned to the numeric variable X.

The numbers are used in the exact order that they are listed
in the DATA statement.

CHAPTER 7

You can set up a program with more loops than numlbers
available in DATA. When this happens, the computer will
use the numbers again. To see this, type in a change in the
last program.

LIST

10 FORN = 1TO 10

RUN

Now you will see the numibers printed twice. When the fifth
loop completes, the computer begins at the first number in
DATA and begins printing the numbers out again.

See what happens when you have fewer loops than data.
To see this, change the program:

LIST
10 FORN =1TO3
RUN




Now let’s look at a program that will read 5 numbers and and adding it onto the last.
add them together before printing the total. Type in:
60 When the 5 loops are completed, the computer prints the ‘

10 T:=0 ’ total.
20 FORM=1TO 5 ‘ 70 These are the numeric constants being used. ‘
30 READ X You can also use READ...DATA with multiple variables in
READ.
40 T=T + X ‘
For example: :
50 NEXT M
NEW
60 PRIN T

10 DATA 3, 6,9, 12
70 DATA1,2,3,4,5

20 DATA 15, 18, 21, 24
10 This starts the total (T) out as zero. Each time you run this

program it will start at zero. 30 FORA=1TO 4
20 This sets up a loop that will repeat five times. 40 READ B, C
30 The numbers in the Data statement are assigned to the 50 PRIN B, C

numeric variable X.
60 NEXT A 1
40 This tells the computer to calculate the total by adding the
value of X to the current total. The variable B will get the numbers 3, 9, 15, 21 from the
DATA statements. The variable C will get the numbers 6, 12, }
50 The computer goes back and reads the next value of X and 18, 24.

calculates the total. It continues by reading each number




o

o_o

o 2 oo




eSS e

You learned that Read...Data is useful when you want to How to set up an array: In order to set up an array vari-

store and use several numbers in a particular order. Now able, you must first decide how many elements you need. If

you can take this one step further and store a group of you want to use 5 different values, then you will need an '
numeric values (constants and variables) and use them in array with 5 elements. To give the computer this informa-

any order you want...any time you want! To do this you will  tion, you will use the DIM (Dimension) statement. The DIM

store these values in an ARRAY VARIABLE. statement gives the computer two pieces of information:

the name of the array and the number of elements in the '
An Array Variable can store many numeric values. You can  array.
picture it as a rectangle divided into compartments. Each

compartment has a numeric value stored in it. Each For example: ’
numeric value stored in an array is called an ARRAY |
ELEMENT. You can have up to 250 elements in an array. DIM AA(5) AA is the name of the array

Each of these array elements is identified by a number in '

parentheses called a SUBSCRIPT. () is the number of elements in the array

Here is what the array would look like so far:

You can use a total of three arrays in a program. They are
identified by the names AA, AB, AC.




CHAPTER 8

This array has five elements. These elements are identified Here’s how the array looks now that you have stored these
by the subscripts (1), (2). (3). (4). (5). The name of each ele-  values:

) ment is AA(1), AA(2), AA(3), AA(4), AA(D). The values have
not yet been assigned to each element.

| Assign numeric values to the elements: Now you need to

i assign a value to each element. Let’s say the values we

‘ want to use are 3, 6, 9, 12, 15. You must assign one value
to one element. Where you assign the values is completely

‘ arbitrary. Just be sure that you have the same number of

| elements as values.

For example:

) 10 DIM AA(5)

| 20 AA(1)=3
| 30 AA(2) =6
( 40 AA(3)=9
|
‘ 50 AA(4)=12
Let’s go through this simple program and see how it works:
} 60 AA(B)=15
\ 10 DIM AA(5)
20 AA(1)=3

30 AA(2)=6




40 AAQ3)=9

50 AA(4)=12

60 AA(B)=15

70 INPU “PICK ONE”, |

80 PRIN “IT I1S”, AA(l)

90 GOTO 70

10

This names the array (AA) and tells the computer there are
five elements.

20-60 Assigns a value to each array element.

70

80

90

The computer prints out PICK ONE and waits for you to.input
any of the subscript numbers.

The computer prints IT IS followed by the value of the sub-
script number you entered. If you input the subscript 4, the
computer prints out IT IS 12. (12 is the value of AA(4).)

The loop begins again.

The computer has stored five values and you can ac-
cess any one at any time. Try this again and type in
another subscript numibber for |.

Let's go a step further and use READ...DATA to assign values

to the elements in an array. -

10
20
30
40
50
60
70
80
90

10

20

DIM AA(5)
DATA 10,20,30,40,50
FORA =1TO5
READ B

AAA) = B

NEXT A

INPU “PICK ONE?”, |
PRIN “IT IS”, AA()
GOTO 70

The Dimension statement names the array (AA) and tells the
computer there are five elements.

The values 10, 20, 30, 40 and 50 are stored in this Data
statement.




30

40

50

60

70

80

90

This sets the value of A equal to 1, 2, 3, 4, 5 in that order
through five loops. These will be the subscript numbers.

B is the variable that will get the values in the Data state-
ment.

This assigns a subscript number and a value to each array
element. In the first loop, AA(A) = AA(1) and it equals
10...AA(1)=10.

The computer goes to the next value of A and continues until
all 5 array elements are given subscript numbers and values.

AA(1)=10
AA(2)=20
AAB8)=30
AA(4)=40
AA((B)=50

The computer prints out PICK ONE and waits for you to input
one of the five subscript numbers.

The computer prints out IT IS, and prints the value of the ar-
ray you selected. If you input 4 for I, the computer will print
out 40.

This lets you input another subscript number and see it’s
value printed.

Now let’s use INPU statements to assign sulbbscript numbers
and values for the elements.

10
20
30
40
50
60
70
80
10
20

30

40

CHAPTER 8 ]

DIM AA(5)

FORA =1TO5

INPU “NUMBER”, N

AAA) = N‘

NEXT A

INPU “PICK ONE”, |

PRIN “IT WAS”, AA()

GOTO 60

Again, this names the array and sets up five elements.

This sets up a loop that will repeat five times and assigns the '
subscript number to each element (AA(1), AA(2)...)

You see NUMBER on the screen and you type in a value for
the first element.

AA(A) is equal to the value that you give N in a particular
loop. If you input 10 in line 30, it is assigned to element
AA(1). AA(1)=10.




50 The loop continues, if you enter 11 for the next N, it is
assigned to AA(2). AA(2)=11. This continues until you have
input all five values.

60 Now the computer prints out PICK ONE and you must enter
a subscript number for the variable |.

70 The computer prints IT WAS and prints the value of the array
for the subscript you picked. If you had entered values of 10,
11, 12, 13, 14, 15, and you had input 1 for the first |, then on
line 70 you would see IT WAS 10.

80 The loop takes you back to the input statement. Try another!

Let’s try a program that will choose Mo of five array ele-
ments and add their two numeric values together.

10 DIM AA(5)

20 DATA 2,7,1,3,4

30 FORA=1TO5

40 READ B

50 AAA)=B

60 NEXT A

70 INPU “PICK TWO”, LM

80 T= AA(L) + AAM)
90 PRIN “THE TOTALIS”, T
100 GOTO 70

10-60 These lines set up the array with five elements and assign
a value to each element.

AA(T)=2
AA(2)=7
AAQB)=1
AA(4)=3
AA(5)=4

70 The computer prints out PICK TWO and waits for you to in-
put two subscript numbers. The first number will be stored
as the numeric variable L...the second as the numeric
variable M.

80 The computer adds the two numbers. If you input the sub-
scripts 1 and 3, 1 is stored in the variable L and 3 is stored
in the variable M. The computer gets the values of AA(1) and
AA(3) and adds the two values together. Here, the total
would be 3.

90 The computer prints the total.

100 You can input two other subscript numbers.

|




L8

SOME RULES ABOUT ARRAYS

B You can use an array exactly as you would any other
numeric variable. For example:

PRIN AA(3) * AA(5)

H In Intellivision BASIC, you can only dimension numeric
arrays.

B You can use any element any time.

B There are three arrays you can use in any program: AA,

AB, AC.

B Each array can hold a maximum of 250 values.

You can use string variables as arrays. Here is an example
of manipulating and comparing string variables:

10-SET BS =+Z:
20 SET A$="A"
30 PUT A$

40 A$(1) = A$(1) + 1
50 IF (A$(1) > B$(1) ) END
60 GOTO 30

10
20
30
40
50
60

30
40
50

CHAPTER 8

The first element of B$ string is “Z".

The first element of A$ string is “A”.

This prints the current value of A$ (now it's “A”).

This increments the value of A$ (now it's “B”).

This checks to see if the value of A$ has reached “Z" yet.

If the value is less than or equal to B$(1), the program goes
back to line 30.

This prints the current value of A$ (now it’s “B”).
This increments the value of A$ (now it’s “C”).

This program continues until A$ reaches the value of “Z".
Once A$ is greater than “Z”’, the program ends.










Routines are “mini programs” that are built right into the
computer. All you have to do is request the routine you
want,

In Intellivision BASIC, you can use several routines to display
and manipulate objects and create and change sounds.
For a complete look at all the routines and their individual
explanations, turn to page 68 in the Owner’s Guide.

Important: Before reading any further about

routines in this book, learn how to use routines to

display and manipulate objects and sounds.
Refer to the Owner’s Guide.

Let’s take a closer look at the CALL HAND routine. CALL
HAND is a special routine that keeps track of which disc
position or key or action button was last pressed or re-
leased on the Intellivision Hand Controller. Each of the 16
disc positions, each of the 12 numbers on the keypad and
all action buttons are given its own identifying number. This
numiber identifies the specific control pressed on the hand
controller. These identifying numbers are listed on page 71
in the Owner’s Guide.

CALL HAND stores values for the disc and keypad under the
variable H...and stores the values for the action button
under the variable A (H only reads one hand controller at a
time. The value of R tells which hand controller is being
read). When used with a print statement, CALL HAND let's
you know which number is currently being stored for the

variables H and A.

Try this simple program and see how this works.
10 CALL HAND

20 PRIN A, H

30 GOTO 10

10 The computer finds the current values for the variables
H and A.

20 The computer prints out the current value for these variables.

You will see two columns of numbers. The left column gives
you the value for A (the action button). The right column is
for H (the keys and disc). Hold down a number on the key-
pad. Then hold down another number. You will see the
numbers change on the screen. Press the top then the bot-
tom action button and see the numbers change in the left
column,

The following program allows you to set up a “major”
musical scale. You will store 12 musical notes and use the
keypad numbers to play each note. This program uses
CALL NOTE, CALL TONE and CALL HAND routines.

58V.= 5

~

10 DIM AA(12)




i

20 DATA 47, 30, 32, 34, 35, 37
30 DATA 39, 41, 42, 44, 46, 49
40 FORB = 1TO 12

50 READ M

60 AA(B) = M

70 NEXT B

80 CALL HAND

90 IF (H<0) GOTO 80

100 IF (H > 99) GOTO 80

110 H H+ 1

120 N

AA(H)

130 CALL NOTE

140 CALL TONE

150 CALL HAND

160 IF (H< 99) GOTO 150

_ CHAPTER 9

170 GOTO 80

5 This sets the volume. (See page 10 in the Owner’s Guide to
learn more about volume.)

10 This names an array with 12 elements.

20 & 30 These values in DATA represent the note number of
each tone that will be p/ayed.

40-70 This gives each array element a subscript number and
assigns each a value.

80-100 Once you run the program, hold down any numeric key
on the hand controller. The computer is looking to see if a
key is being pressed.

110 This takes the value of the key you pressed (0-11) and adds
1 to it. So we have a number from 1 to 12.




120 N is the variable used with CALL NOTE. This is the note
number for the tone you will generate.

130 This sets the pitch (P) for the note (N).
140 This generates the tone.

150 & 160 This looks at the keypad again. You must release a
key in order to stop the 150-160 loop.

170 This sends the computer back to 80 so you can now press
another key for another tone.

There are many functions you can use in a program.
Generally, most are used to manipulate and control mov-
ing objects in Intellivision cartridges. Functions can be used
just as variables.

Each of the functions has been given an identifying name.
The name begins with two letters. This is the function label
and is the general heading for the function. It is followed
by a number in parentheses called the argument. The
argument identifies what object or value the function
relates to.

For example, let’s look at the function that deals with the
color of an object. CO(3) is the color of object 3.

CO is the label.
(3) is the argument.

The label for a function is always the same, but you can
change the argument by putting in another value. For ex-
ample CO(4) is now the color of the object 4.

In order to tell the computer to do exactly what you want,
you must set the function equal to a numeric value. This
can be a numeric constant or a numeric variable. This
number tells the computer specifically what to do to that
object (the argument).

= |




Let's continue using the example of the color function.
There are 16 possible colors available in the color function.
They number from 0-15. (The colors and their corresponding
numbers are shown on page 56.) If you want a specific ob-
ject to be a specific color, here’s how fo do it.

COo@®) =
This will furn object 3 yellow.

To recap: The function tells you three things. The informa-
tion on the left of the equal sign tells you what the function
is (the label) and what will be affected (the argument). The
information on the right of the equal sign tells what it will do
to the argument.

Try an example by first displaying an object on your screen,
using the CALL GRAB routine. See page 87 to find the CALL
GRAB routine for the cartridge you want!

Next assign number 1 to your object and type in these
commands. Watch the object Chonge color. Here you are
setting the function equal to a numeric constant. This con-
stant represents a color. Each numeric constant offec’rs the
argument. It sets the color of the argument.

co()=7
Cco(1) =
CcO(1)=5

Here you are setting the function equal to a numeric
variable.

@ Important: Turn fo page 58 in the Owner’s Guide
and learn about all the functions.

LET’'S TAKE A CLOSER LOOK AT THE FORMAT
FUNCTION

The Format Function allows you to display columns of
numbers in different ways. The argument for the format
function can be a number from 0 to 4. See page 65 in the
Owner’s Guide for the details on the argument numbers.

In the following examples, the numeric value affects the

argument. It assigns how many numbers will be to the right
of the decimal point.

FM(0) =0
PRIN 1,2

You will see: 1 2




— I 4
A= B/ /4 NOTE: Color 5 is the same color green as the
PRIN 1.2 background color on the TV screen...therefore ;
> you don't see it! ’

You will see: 1.0 20
Here's a program that uses the Format Function fo set up a l

e “column for income and a column for expenses and totals

each. This is a useful program for household budgeting.
PRIN 1,2 #

You will see:  1.00  2.00 5 FM(0)=2
In this example, the numeric values affect the character 10 DIM AA(5) (
color for the print statement by giving it a different color 20 DIM AB(5)
each loop.
10 FORA=0TO 7 30 T=0 [
20 FM(@4)=A 40 S=0
30 PRIN A 50 FORA=1TO5 v 4
40 NEXT A 60 INPU “INCOME”,I
In the first loop the color will be black (0), the second loop o l
will change the color to blue (1)...and so on. 80 INPU “EXPENSE”.E
|
0 T=T+E |




CHAPTER 9

100 AAA)=I 60 [Input an income number and it’s stored in the variable |.
]
i 110 AB(A)=E ! 70 This tells the computer to keep a running total for S, by add-
ing each | to S.
120 NEXT A
[ 80 Now you input an expense number and it’s stored in the
130 FORA=1TO 5 variable E.
( 140 PRIN AA(A), AB(A) 90 This tells the computer to keep a running total for T.
| 150 NEXT A 100 This creates an income array.
: 160 PRIN “##TOTAL#####TOTAL” R 110 This creates an expense array.
| >WHEREVER YOU SEE #.
‘ 170 PRIN “##INCOME####EXPENSE” 120 The loop continues. You input 5 income numbers and 5 ex-

pense numbers and the computer assigns them to arrays.

o 180 PRIN S, T

| : F i 130-150 A new loop is started which prints out 2 columns

' 5 This sets the format to‘two numbers per line with two digits of numbers. The left column of 5 numbers is for income, the
right of the decimal point. right column of numbers is for expenses.

|

[ 10 This income array has five elements. 160 You see TOTAL at the bottom of each column.

) 20 This expenses array has five elements. 170 You see INCOME and EXPENSE.

l 30 T= total expenses. It begins at zero. 180 The computer prints the totals for income and expenses.

| 40 S= total income. It begins at zero.

| 50 This sets a loop that will repeat 5 times.




To print this out (using a printer), type:

D= -1
CALL OUTP
LIST

To return to the screen, type:
Bi=
CALL OUTP

THE BACKGROUND FUNCTION

BK stands for Background Color. This sets the color on a cer-
tain portion of the TV screen. The screen is divided into a
grid of 20x12 squares. Each square is called a card. Each
card is numbered from 0 to 239,

¢ REEER AN ASREE R
2030 BRI ERTETTEERY BREaES

s AREREREEREEEY IEEEESE
o0 REEERTHEEEEE RS T
sos REEEEEEEOEEF EE R

12z REEE TR AR R e e
ue-5o EREEE NEEEEE RS R A
SEEERE T A

160-179 | IINIIEE

200-219 DB ER

HECE S
202y BREEEEETEREREEEREBEE




CHAPTER 9 "

The argument of the background function is the card 10 Tells you to input two numbers. The variable A represents a
\ number. The function can be set equal to any of the 16 card number from 0-239. B represents a color number from
color numbers (from 0 — 15). 0-15.
20 This tells the computer to make the card you specify turn the
g 0 = Black 8 = Gray color you specify.
g 1 = Blue 9 = Cyan
‘ = 10 = Orange
% = $§r(1j 12 Browr? To make card 233 red, input 233 and 2.
f = 12 = Pink
| ST een 152 |ightiBlue To make card 150 yellow, input 150 and 6. You type this
6 = Yellow 14 = Yellow-Green over your last command.
7 = White 15 = Purple

1 Just for the fun of it, run the following program and you will
1 see the screen fill with alternating black and blue cards.
For example:

| BK(33) = 10

| , 20 FORA=0TO 239
Means card 33 will be orange.

BK(20) = 1

10 X=0

30 BK(A)=X
‘ Means card 20 will be blue. : 40 X=X + 1

Here's how you can set a specific color to a specified card. 50 IF (X=2) X=0

10 INPU A,B 60 NEXT A
| 20 BK(A)=B 70 END
| 30 GOTO 10

| N




o

10 This starts th lor at black.
Is starts the color at biac THE RANDOM NUMBER FUNCTION

20 This sets a loop to change all cards on the screen. The Random Number Function tells the computer to choose /
a number from 0 to 99. There is no limit on the amount of {

random numbers the computer will generate. The argu-

ment for this function is a “dummy”. This means it can be

40 & 50 This switches the color back and forth from black any number. Try this o see how it works. 1

to blue.

30 This sets the color.

60 This sends the computer back to begin the next loop. A = RN(0)

PRIN A {

70 This ends the program.
A number from 0-99 is printed on the screen.

List this program and change line S0. The following program generates two random numbers {
and adds them together.

50 IF (X=3) X=0

Now run it again and see what happens. ) 10 A=RN(0) | ﬁ
20 B=RN(0)
30 PRIN “ADD”, A,B !
40 C=A+B
50 INPU D {
60 IF (C=D) GOTO 90 '
70 PRIN “WRONG”, C ‘

e ————————
b




i |

80 GOTO 10

90 PRIN “RIGHT”

100 GOTO 10

10 & 20 This selects two random numbers.

30
40
50
60
70

80
90

This prints ADD followed by two numbers.

This adds the two numbers together.

Input @ number here, the sum of the two random numbers.

If your answer is correct, the computer goes to line 90.

If your answer is incorrect, the computer prints WRONG
followed by the correct number. ’

The computer begins another addition problem.

If your answer at line 60 is correct, the computer prints
RIGHT. .

100 The computer begins again.

CHAPTER 9







—— ~—

I How To Write Your Own Program




Now it's fime to put all the BASIC concepts into action...
and write a program of your own! Remember, start with a
simple program and work your way up.

HERE'S HOW TO ORGANIZE A PROGRAM:

B Before you begin any program, think through what you
want this program to do. What results do you want? List
these things out:

Do you want to store info...if so what?

Do you want to input info...if so what?

Do you want something to print out?

Do you want any arithmetic operations performed?
Do you want the computer o repeat a procedure?

B Write the program out on paper. Leave spaces...don’t
just start at line 10 and go straight through. As you write
your program make a list of what your variables stand for.

B Piece your program together. Begin with a very simple
program and add your features one at a fime. This is really
important!

B Refresh your memory about how many characters you
can have per line...and the proper punctuation!

B Make sure the only statements that are in between FOR
and NEXT are those you want repeated!

Any time you write a program there is a chance something
could go wrong. If the program doesn’t run the way you
want it to...or if it won't run at all, your program has BUGS!
To get the bugs out, or DEBUG your program, follow this
checklist: _

BEFORE YOU RUN OR LIST A PROGRAM

B Check each line for any errors in typing.

B Check the color coding to see that everything turned the
right color. (For information on color coding, furn to page
36). Check to see if there are any gray or black colors. If so
there’s an error.




EVERYTHING TURNED COLOR BUT THE PROGRAM
STILL DOESN'T RUN!

B List the program and check the values of what you are
enfering. Did you use your constants and variables correct-
ly? Check IMPORTANT on page 32 & 33 to see that you
have used the correct values for numeric and string
variables.

B Check your Print statements. Did you assign your string
variables correctly? Did you use string constants with
quotes?

B Check the punctuation and use the arrow keys fo make
any corrections.

IF YOU JUST CAN'T FIND ANYTHING WRONG

The disconcerting moment may arise when you just can’t
find a blasted thing wrong...but the program still won't run.
When this happens, it could be blamed on a logical error.
The mistake could be in your thinking. Go through your pro-
gram and make sure you told it fo do what you think you
did! Good luck!

CHAPTER 10










Before you enter this program, you must first display an ob-
ject on the TV screen. See page 87 and type in the routine
for the cartridge you have inserted. Now type in the
following:

10 XV(0)=10

20 GSUB 110

30 XV(0)= —10

40 GSUB 110

50 XV(0)=20

60 GSL;B 110

70 CO(0)=2

80 GSUB 110

90 XV(0)=0

100 END

110 FOR A=1TO 30

120 NEXT A

130 RET

- - ————

40
50
60
70
80
90

This sets a slow velocity and starts the object moving right.

This sends the computer to line 110.

This makes the object run left.

This sends the computer to line 110.

This sends the object to the right at a faster speed.
The computer goes to line 110.

The object turns red.

The computer goes to line 110.

This stops the object.

100 The program ends.

110-130 This creates a time delay.




Every Intellivision cartridge has several moving objects.
Once you insert a cartridge into the Computer Adaptor,
you can display any of its objects on the TV screen. First
find the routine for the cartridge you are using. Next find
the object you want to display. Now type in the following
routine and fill in the numibers for M, N AND D. Press
after each line.

M=
N=
O=
D=
CALL GRAB

For example, look at Advanced Dungeons and Dragons
below. To display the bow, you could type in:

M=0 Press
N=6 Press
O=1 Press | RTN

D=1 Press

CALL GRAB Press| RTN

If an object is made up of two halves, you will need to type
in the following:

<
I

0=1
Pi=

CALL GRAB
M
N

0=2
D=
CALL GRAB

CALL LINK
XV(2)=8

CHAPTER 11




For example, to link the left and right of the Bear in Math

Fun, you would type in:

M=0
N =50
O0=1
D=2

CALL GRAB

M=0
N =52
0=2
D=2

CALL GRAB

CALL LINK
XV(2)=8

S S

ellcili=l o Fra

Exit staircase
Demon sign

N D DESCRIPTION
0 Crown

4 Food trail

3

4

Arrows container
Bow only, to shoot with
Boat

O O O o o

S
w
[ NG TR SO TR NG TR NG T N T S ™ SO i Sl G I GRS G 6 T e S

*ADVANCED DUNGEONS & DRAGONS and TREASURE OF TARMIN are trademarks
owned by and used under license from TSR, Inc. This Cartridge is approved by TSR,
Inc., the publisher of the Fantasy Role Plcying Games sold under the frademark
ADVANCED DUNGEONS & DRAGONS® ® 1982 TSR, Inc. All Rights Reserved.

—




O et e o e L R e S e S S T S S U —
o e e e e n e e e Dot e s e e e R e e i s Ce e |
q—
{ :
| =

N D M DESCRIPTION N D M DESCRIPTION
0 2 0 Tank in reserve Car direction: going straight right or straight left
2 2 8 o Rich f tan \ going counterclockwise 0 2
: - 2 9
20 2 8 Lefthalfof: oing counterclockwise et
38 2 0 : i
39 2 6™ ) 8 o ) 0
53 2 0 Tank destroyed 10 5 0
12 2 0
14 2 0
16 2 0
18 2 0
N D M  DESCRIPTION 20 2 0
22 2 0
0 1 0 Laser gun o4 2 0
1 1 4 Bullet j 2 2 0
6 1 0
e 2t 28 2 0
14 1 3 30 5 0
s | 2 r direction: going downwi
2 T 32 2 0 Lefthalfof car
34 2 0 Right half of car

CHAPTER 11




N D M DESCRIPTION N D M DESCRIPTION
Only use At O=1
®©=3 0 2 7 Player running
0 1 0  Cursor 16 2 0  Playéf standi
18 1 3
22 2 1
26 2 3
34 2 4
N D M  DESCRIPTION 44 2 6
58 2 3
0 1 0 Ball 66 2 1
1 2 0 Player insitfing position At O=0
3 2 3 Player running up and down D=1
11 2 7 Player funning sideways
27 2 0  Pitcher (non-throw position)
27 2 7. Pitcher throws ball
37 2 2 Player o
41 2 0 Player R TR
43 2 7  Bafterhitsball




CHAPTER 11

DESCRIPTION

DESCRIPTION

10
36
44
48
52
56
64
72
80
104

Hot Dég; back side
Hot Dog
Pickle

Egg

W wWwwa2 > >N DNIZ

NN NPNMNPNONMNMNNMNDNDNDNODN O
<y
S

w

1BURGERTIME is a trade AST USA, Inc. used-under license.

© 1982 DATA EAST USA, Inc.

O S S NI N N ]

Player in still posific

:§n Throwing stance
layer in throwing stance

N D M DESCRIPTION

0 1 0 Unmoved checker
| 1 0 King

2 1 0 Checker as cursor
3 1 0 Arrow




22 2 0 Player tackled

N D M DESCRIPTION

0 2 7 Tron or warrior men running

16 2 sodn o SRRocas N D M DESCRIPTION |
18 2 0 Tron gets hi

20 2 0 2 2 10  Left side of frog jumping into [
22 2 2 32 2 Right half of still frog R '
28 2 3 34 2 Right side of frog jumpi

36 1 0 56 2 climbing up from

38 1 3 62 2 2
41 1 2 Disc movement 65 1

48 2 1 Recognizer 67 4

52 1 3 Paralyzer beam ; 69 4 |
56 2 0 Paralyzed shock 74 2 ‘
*© 1982 Walt Disney Productions. 82

88 : [¢) Iylng

N D M DESCRIPTION ;
0 2 7 Player running sideways

16 2 0 Player in non-play (standing) position ‘
18 2 0 Player in grouping position }
20 2 0 Player in grouping position 3

S R S T I T Tl
IR G e R P S s e B A o S G § TR R SR S S o




‘ CHAPTER 14

N D M DESCRIPTION N D M DESCRIPTION
‘ 10 2 3 When golfer putters 0 2 5 Right half of running horse
\ 37 2 4 Bar movement 12 2 5 Left half of running horse

; N D M DESCRIPTION N D M DESCRIPTION
, 0 2 0  Goalie 0 2 1  Eyeo
8 2 4 4 2 1 Top and
18 2 6 nd falls down and gets back up 8 1 0 Middle
o 10 2 7 Sideway. oliceman
32 2 its inactive 24 2 8 Qolicemcm
42 2 42 2 8 Teappears again

tLOCK ‘N’ CHASE is a trademark of DATA EAST USA, Inc. used under license.
© 1981, 1982 DATA EAST USA, Inc.




N D M DESCRIPTION

o
N
(o]

Left half of monkey r
Right half is mirrepi

18 2 0
20 2 0
22 2 0
24 % 0
26 2 0
28 2 0
30 2 0
32 2 0
34 2 0
36 2 0
38 2 0
40 2 0
42 2 0

1© 1984 Children’s Television Workshop, Inc.

unning, at initial start

nage only

44
46
48
50
52
54
56
58
62
68
74
78
98
100
102

= NN NNDNPNODNNNNMNNNDNNDNNNNDNDND

- OO0 >~ =>NN->0 00000 O

Right of lion

Left of elephant

Right of elephant

Left of bear

Right of bear

Left of crocodile

Right of crocodile

Monkey jumping up and down, at end of game
Right half of monkey jumping into water
Left half of monkey jumping into water
Monkey in water

Monkey reappears in full form on land
Left of sheep

Right of sheep

Water splashing




—

N D M DESCRIPTION N D M DESCRIPTION
0 2 Flynn 0 2 ion of man running
11 2 ved from one 0 2
16 2
12 4 20 1
27 2 28 1
41 il 20 1
51 2 35 1
53 1 38 2
SoE 2 40
59 2 41 2
[N 46 2
85 2 at Flynn 50 1
' 50 1
57 2
61 2
67 2
74 2
75 2
79 2
81 2

*© 1982 Walt Disney Productions.




N D M DESCRIPTION N D M DESCRIPTION

0 2 3 At O=0

8 2 0 0 2 0 Cursor

10 2 0

12 2 3

20 2 3 ard fo players

28 1 14

A S N D M DESCRIPTION

44 1 0

42 1 0 At O=1

43 ] 0 2 2 0 Left half of card facing down

44 1 0 4 2 0 Right half of card facing down

45 1 0 1 1 0 Face of middle player

46 1 0 6 1 0 Face of side players

47 1 0 7 1 0 Neck of side player

48 4 0 9 1 0 Neck of side player

50 1 0 f 10 1 11 Upper left corner of up-card, featuring card

51 1 0 Up : e ! . numerical orders

MirroLimage to.make. onie whole card 23 1 0 Lower left of card, with spade suit

53 1 0 Flashing arrow 24 1 0 Lower left of card, with heart suit
25 4 0 Lower left of card, with club suit
26 1 0 Lower left of card, with diamond suit
27 1 0 Card face down




28
, 29
g 30
! 31
32
{ 33
\ 34
35
j 36
37
38
39
40

=~ & S A s a8 s A A A A s

O S, s S-S

OFOEEONEGNI@EO © O O O O O

e G 0 e @

Left hairpiece of middle player

Right hairpiece of middle player

Left neck and shoulder of middle player
Right neck and shoulder of middle player
Bodice of middle player

Left hairpiece of side player

Right hairpiece of side player

Left neck and shoulders of side player
Right neck and shoulders of side player
Left half at arm level

Right half at arm level

Left half at chair level

Right half at chair level

More descriptions for side player with plaid skirt
Left shoulder

Right shoulder

Left bodice

Right bodice

Left half of plaid skirt

Right half of plaid skirt

DESCRIPTION

o O WN >0 | Z

10
11
13
18

31

Ooooooo|Z

N O O M ~0O

One ship in fleet of 3
Two ships in fleet of 3
Three ships in fleet of 3
Aircraft carrier

Troop transport

Battle shi

Mine sweeper

Bullet

Multiple gunshofts (5 variations)
Explosion of ship

Cross hair

Destruction of ship into pieces




N D M DESCRIPTION

0 2 1 Player fish size 1

4 2 1 Player fish size 2

8 2 1 Player fish size 3

12 2 1 Player fish size 4

16 2 1 Player fish size 5

20 2 3 Front head of swimming shark
28 2 3 End tail of swimming shark
36 2 1 Front head of shark killed
40 2 1 End tail of shark killed

44 2 2 Other (blue) swimming fish, size 0
50 2 2 Blue swimming fish, size 1
56 2 2 Blue swimming fish, size 2
62 2 2 Blue swimming fish, size 3
68 2 1 Tan swimming fish, size 0
72 2 1 Tan swimming fish, size 1
76 2 1 Tan swimming fish, size 2
80 2 i Tan swimming fish, size 3
84 2 o] Movement of sea horse
98 2 2 Purple fish, size 3
104 2 4 Pink fish, size 4

108
112
118
124

NN NN

== N N

Orange fish, size 4
Movement of crab
Movement of lobster
Movement of bubbles

N D M DESCRIPTION
Only use
©=5

0 2 2 Movement of spaceship (SPACEGUNNER)

o) | &) Submarines (4 variations)

10 1 2 Submarine sinks

13 1 2 Bullet (SPACEGUNNER)

16 2 3 Explosion at gunsight (SPACEGUNNER and

SUBMARINE) ;

23 1 0 Bullet (SUBMARINE)

25 2 7 Player running (PASS GAME)

41 2 0 Offending player passing ball

43 2 0 Receiving player getting ball

45 2 0 Tackled player (pass defender)

47 2 0 Tackled player (pass offender)

49 1 0 Ball on ground

50 1 0 Ball on player’s hand




51

53
55
57
61
65

77
78
79
80
81
82
83
84

N

= a2 NN DNDN

R S G e

O O OO oo o

Player kneeling with both hands and feet on
ground

Player half bending

Player in blocking position

Movement of blop-like target monsters
Movement of devil-like target monster
Disintegration of monster

ACEGUNN
Arrow pointing left (MAZE SHOOT)
Arrow pointing up (MAZE SHOOT)
Arrow pointing right (MAZE SHOQOT)
Arrow pointing down (MAZE SHOOT)
Player’s treasure

Left of pyramid

Right of pyramid

CHAPTER 11

N D M DESCRIPTION

0 2 6 Skis circling a one/half circle as skier turns
14 2 1 Skis tumble as skier falls

16 2 3 Skier falls and gets up

24 2 12 Skier in different positions from start o finish

N D M DESCRIPTION
Only use
©=H i
0 1 0 H serpent going left
1 1 0 Hea ent going diagonally up to the right
2 1 0 Head o ent going up
3 1 0 Head of ent going diagonally up fo the left
4 1 0 Head of serpe ing right
5 1 0 Head of ser ing diagonally down to the left
6 1 0 Head of serpn own
7 1 0 Head of serpent iagonally down to the right
8 1 7 Twisting action of (BITE GAME)
16 1 5 Obstacles (6 variations) -

Also explosion




50 1 0 Left half of first row targets (orange) ’
40 1 0 Right half of row targets (green) i
44 1 0 Left half of 3r w yellow targets
N D M DESCRIPTION 42 1 0  Right half of 3@ row yellow targets
0 1 0  Bal = 3 0 {
1 0, 0  Receiving player 44 1 0 targets i
3 2 3 Player rupn : 45 1 0
11 2 7 Player runnin: 51 2 4 nt and explosion ‘
27 2, 0  Throw-in: Pk urns the pall inbounds by o1 2 1 ‘
throwing.it o\ delinem m 65 1 0
29 2 0 Player sideki  ="m oy
31 2 2 Offensive controlled o yerﬂcks ball to start of 67 2 1 !
74 2 2 Explosion ‘
{
' |
N D M DESCRIPTION
0 2 0 Laser gun (
0 2 4 Laser gun disintegrates
10 2 2 Explosion when laser shot hits space creatures
16 2 3 Movement of white wiggling bombs 1
22 2 1 Explosion of white bomb as it lands on ground ]
26 2 ) Movement of laser shots
38 1 0. Left half of first row creatures (orange) !
46 1 0 Left half of first row targets (orange) !




CHAPTER 11

; N D M DESCRIPTION N D M DESCRIPTION
{
| 0 2 1 Alien squadron in battle scene (front view) 0 1 1 f celestial bodies
2 2 1 Alien squadron flying to left upper side 2 1 0
; 6 2 15  Different faces of alien squadron 3 1 0
' 38 2 0 Gun sight 4 2 1 Double
' 40 2 0 Gun missiles 8 2 1
42 2 0 Explosion of gun missile 12 2 5
| 44 2 3 > f alien squadron 24 2 5
i 50 1 3 small and harmless to large 36 2 2 Comet
42 2 7 Hunter’s
{ ot 58 2 3 Hunter’s
| ;.;,5 g 66 1 2 Trail left in ai ter thrusts in air
96 Alien squadron ofsix fighters, 69 1 7  Hawk flying, gets-hit and disintegrates

Alien squadron of eight fightt
Alien squadron of ten fighters
Alien squadron of twelve fighters
Alien squadron of fourteen fighters
Alien squadron of sixteen fighters

Mothership squadron changing from one fo three
units

[N

o
N T
N O O O O




N D M DESCRIPTION N D M DESCRIPTION
0 1 0  Airfo-air laser trigger 0 1 0 One ship in enemy convoy
1 1 0 Enemy convoy
1 1 1 Red target ;
2 1 0 Alenspf all size (farther view) e : ;(;gl ;”::s“r’;'»’l‘; splecied
. 1
2 ; 2 g 4 1 4 from far to near
4 1 4 o y 3
o) 1 4 S ship fires mother- 13 1 1
S , 15 1 0
8 1 0 Bullet releé SN spaceship 16 1 0
1 1 0 Explosion of red target 17 4 0
12 1 0 Your spaceship 18 AL
19 1
20

29
31
32
34

AR eslN

O >~ 0 ~

ot in periscope
in measuring meters

Explosion in water

Your submarine flashing in attacking scene
Explosion

Enemy convoy fleet

=




N D M DESCRIPTION N D M DESCRIPTION
Only at 0 1 0 Bullet in BATTLE TANK
O1= 1 3 ' BB ond shadow 1 ent of tank turning one quarter of circle
b ; 11 on
6 2 5 Player running S >
) 16 ircling one half of circle
18 2 2 Player serving ball : :
_ ek R 32 2 F0 Carinnormal shape
24 2 1 Player running horizontally from inner to outer court : ;
when servingballt: 34 2 0 Car in accident
28 2 6 Mdiemen . 36 2 0  Elevated stru
> : 38 1 0 Balloon
40 1 0 Bullets of BIPLA|
44 1 ne divider
43 4 formation in 2 variations)
45 1 ruined in accident

CHAPTER 11




o

DESCRIPTION

M

DESCRIPTION

-
-

i T UC e G N0 T S G G i i

®mOO0OOO0OOOOODOUMOWNOOO|Z

~ Cursor
Fishing boat
fBT bocitl

ing of fishing boat
ool of fishes moving
cships @

n storms or fropical storms
hurricanes

1
1

Front head of monkey
End tail of monkey




|

CHAPTER 11

i













‘?r,v /






